
Normal Track

The Expanded Train and a Bomb

Example

A train with proper lengths r L (with 0 < r ≤ 1) moves at speed v towards a tunnel with proper length L. A bomb is 

located at the front of the train. The bomb is designed to explode when the front of the train passes the far end of 

the tunnel. A deactivation sensor is located at the back of the train. When the back of the train passes the near end 

of the tunnel, this sensor tells the bomb to disarm itself.

◼ In the train’s frame, what is the largest value of r in terms of v for which it is possible for the bomb not to 
explode?
Hint: Set t = 0 when the rear of the train enters the tunnel and solve for the time when the deactivation signal 
reaches the front of the train and the time when the front of the train emerges from the tunnel.

◼ Redo this analysis in the tunnel’s frame. Do you get the same answer?

Solution

In the train’s frame, the length contracted tunnel moves towards the stick. If r ≥ 1
γ

, the bomb will clearly explode 

(in fact, r = 1 is the traditional Ladder in a Barn question).

Out[ ]=

r

Assuming r < 1
γ

, we set t = 0 as the time when the rear of the train (with the sensor) enters the tunnel. At this point, 

the sensor sends a light signal towards the front of the train, and it is a race between that photon and the front of 

the train emerging from the tunnel exit.

The time it takes for the photon to reach the front of the (stationary) train is r L

c
, while the time it takes the back of 

the length contracted tunnel to reach the front of the train (with the bomb) equals 
L

γ
-r L

v
. Setting these two quanti-

ties equal yields

r L

c
=

L

γ
-r L

v
(1)

r =
1

1+ v

c

1
γ (2)

which, as expected, is less than 1
γ

!
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In[ ]:= SimplifySolve
r L

c
⩵

L

γ
- r L

v
, r /. γ →

1

1 -
v2

c2



Out[ ]= r →

c 1 -
v2

c2

c + v


Redoing this analysis from the tunnel’s frame, we now see the length contracted stick entering the tunnel as shown 

below. Setting t = 0 as before, a photon fired from the back of the train must reach the front of the train (a net 

distance r L

γ
) while moving at a speed c - v relative to the front of the train (since the train is moving away from 

the photon), which will happen in time 
r L

γ

c-v
. Meanwhile, the front of the train approaches the rear of the tunnel, and 

the collision between them will occur in 
L-

r L

γ

v
.

Out[ ]=

r

Setting these two quantities equal to each other yields
r L

γ

c-v
=

L-
r L

γ

v
(3)

r =
1

1+ v

c

1
γ (4)

In[ ]:= SimplifySolve

r L

γ

c - v
⩵

L -
r L

γ

v
, r /. γ →

1

1 -
v2

c2



Out[ ]= r →

c 1 -
v2

c2

c + v


Note that the two values of r had to be the same in both frames, because the train cannot explode in one reference 

frame but not in another (whether the train explodes or not is frame independent). □ 

More Equal Speeds

Example 

A moves at speed vA, and B is at rest. At what speed vC must C travel, so that she sees A and B approaching her at 

the same rate? 

Out[ ]=
A
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Suppose that A and C arrive at B at the same time. In the lab frame (B's frame), what is the ratio of the distances 

CB and AC? (The answer to this is very nice and clean. In such cases, you should think of a simple, intuitive 

explanation for the result!)

Solution 

Denote A’s, B’s, and C’s speeds by vA, vB, and vC, respectively. Let us boost all of the speeds by vC to the left to 

go into C’s frame.

Let’s begin with the two easy ones. Boosting C’s speed to the left will result in no velocity, by construction. Next, 

since B is at rest, boosting its speed by vC to the left yields the speed -vC pointing to the right (or a speed vC 

pointing to the left). Finally, boosting A’s speed to the left by vC yields the velocity vA-vC

1-
vA vC

c2

 pointing to the right. In 

order for A and B to approach C at the same speed from both directions, we must have 
vA-vC

1- vA vC

c2

= vC (5)

Solving this using Mathematica, 

SimplifySolve
vA - vC

1 -
vA vC

c2

⩵ vC, vC, c > 0

vC →

c c - c2 - vA2 

vA
, vC →

c c + c2 - vA2 

vA


Of the two solutions vC =
c2

vA

1 ± 1 - 
vA

c

2

1/2
, only the minus sign solution is physical (i.e. less than c), and 

hence the speed at which C must travel is vC =
c2

vA

1 - 1 - 
vA

c

2

1/2
.

If A and C arrive at B at the same time (note that the two events - A arriving at B and C arriving at B - occur at the 

same time and place; therefore they occur simultaneously in all frames), then the ratio of the distances will equal
CB

AC
=

vC-vB

vA-vC

=

c2

vA
1-1- vA

c

2


1/2


vA-
c2

vA
1-1- vA

c

2


1/2


=
1-1- vA

c

2


1/2


vA

c

2
-1-1- vA

c

2


1/2


(see comment below)

=
1

1- vA

c

2


1/2

= γA

(6)

where in the third step we divided by 1 - 1 - 
vA

c

2

1/2
 and used the relation

1- 1- 
vA

c

2

1/2
 1+ 1- 

vA

c

2

1/2
 = 1- 1- 

vA

c

2
 = 

vA

c

2

(7)

while in the last step we defined

γA =
1

1- vA

c

2


1/2 (8)

to be A’s γ factor in B’s frame. This implies that C is γA as far from B as she is from A. Note that for non-relativis-

tic speeds v ≪ c, γA ≈ 1 and vC =
vA

2
 so that C is midway between A and B. 

You may (or at least should) be wondering why in the world CB

AC
= γA is such a simple relation. In physics, getting 

such clean results demands a correspondingly simple explanation. Simple answers imply that if we had 
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 correspondingly simple explanation. Simple  imply

considered the problem from a different perspective, we should have easily been able to deduce that CB

AC
= γA.

Here is one intuitive reason why the value of CB

AC
 must come out to be the clean result γA. Imagine that in C’s 

frame, A and B are carrying identical jousting sticks as they run toward C; by the problem setup it is clear that the 

tips of both sticks will hit C simultaneously in this frame. Because those two events occur simultaneously at the 

same point in C’s frame, they occur simultaneously in all frames...including B’s frame! But in B’s frame, B’s stick 

is uncontracted, while A’s stick is length-contracted by a factor γA. So when the tips of the two sticks touch C 

simultaneously, this forces A to be closer to C than B is by a factor γA, as desired. □ 

The Triplet Paradox

Example

Consider the following variation of the twin paradox. A, B, and C each have a clock. In A’s reference frame, B 

flies past A with speed v to the right. When B passes A, they both set their clocks to zero. Also, in A’s reference 

frame, C starts far to the right and moves to the left with speed v. When B and C pass each other, C sets his clock 

to read the same as B’s. Finally, when C passes A, they compare the readings on their clocks. At this event, let A’s 

clock read TA, and let C’s clock read TC. Define γ = 1

1-
v2

c2

1/2 .

(a) Working in A’s frame, show that TC = TA /γ

(b) Working in B’s frame, show again that TC = TA /γ

(c) Working in C’s frame, show again that TC = TA /γ

Solution

Part (a): Let the starting distance between A and C at time t = 0 be 2 d. In A’s reference frame, B and C will meet 

each other a distance d away from clock A, with both of these clocks moving at speed v. B’s clock will be running 

slow by a factor of γ, so it will be showing a time d

v γ
 when B and C meet, and transfer this time over to C. 

The time it takes for B and C to meet will equal the time it subsequently takes for A to meet C, since both B and C 

travel at speed v, and clock C is now retracing B’s path. Since C is moving at speed v, the time d

v γ
 will elapse on 

clock C between the time it meets clock B and clock A. Therefore, C’s clock will ultimately read TC =
2 d

v γ
. Through-

out this entire time, A’s clock will read the same amount of time, but without the time dilation factor, TA =
2 d

v
. 

Therefore, TC = TA /γ.

Part (b): Now let’s looks at things in B’s frame, where A moves away from B at velocity v while C chases A at a 

velocity given by relativistically adding speed v with v. Let B’s clock read tB when he meets C. Then at this time, 

B hands off the time tB to C, and B sees A’s clock read tB

γ
.

We must now determine how much additional time elapses on A’s clock and C’s clock, by the time they meet. 

From the velocity-addition formula, B sees C flying by to the left at speed v2 ≡
2 v

1+
v2

c2

. He also sees A fly by to the 

left at speed v, but A had a head-start of v tB in front of C. Therefore, if t

 is the time between the meeting of B and 

C and the meeting of A and C (as viewed from B), then v tB = (v2 - v) t

. During this time, A’s time increases by t



γ
 

while C’s clock increases by t


γ2
 where γ2 =

1

1-
v2

2

c2

1/2 . Thus the total time on clock A is
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TA =
tB
γ
+

t


γ

=
tB
γ
+ tB

v

(v2-v) γ

=
tB
γ

1+
1+ v2

c2

1- v2

c2

= 2 γ tB

The total time on clock C reads (after some algebra)

TC = tB +
t


γ2

= tB + t
 1-v2

1+v2

= tB + tB
1+v2

1-v2
1-v2

1+v2

= 2 tB

(10)

Therefore, TC = TA /γ.

Part (c): In C’s frame, A and B both approach C, but B does so faster, moving at a velocity of v2 ≡
2 v

1+
v2

c2

 as found 

in Part b. Denote the starting distance between B and C to be d

≡

2 d

γ
 (the length contraction of the distance dis-

cussed in Part a (although since we want the ratio of TA to TC this length contraction cancels out)). Then B and C 

meet at time d


v2
 (as measured by a stationary observer in C’s reference frame), at which point B’s clock reads d



v2 γ2
, 

which is the time that B passes off to C. It then takes a time d


v
-

d


v2
 for clock A to reach C, which means that C will 

ultimately read (after some messy algebra, which should simply be done in Mathematica)

TC =
d


v2 γ2
+

d


v
-

d


v2

=
d


v


v+v2 γ2-v γ2

v2 γ2


=
d


v γ2

(11)

FullSimplify
d

v γ2
==

d

v2 γ2
+

d

v
-

d

v2
/. γ2 ->

1

1-
v22

c2

/. γ →

1

1-
v2

c2

/. v2 →

2 v

1+
v2

c2

, Assumptions → 0 < v < c

True

The total time it takes for A to reach C (as measured in C’s frame) equals d


v
, and due to A’s speed v the final time 

that A reads will be 

TA =
d


v γ
(12)

Therefore, TC = TA /γ. □ 

Hard Track

Deriving Length Contraction

This problem gives a derivation of length contraction that does not rely on time dilation!

Example

Assume that the rule for (longitudinal) length contraction is: "If a stick with proper length L moves at speed v with 

respect to you, then its length in your frame is av L." Our goal will be to find av. A critical point here is that the 
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respect  you,  length  your  goal  point

first postulate of relativity says that all inertial frames are equivalent, so the same av L rule must apply to everyone.

Consider the following setup. A train with proper length L moves with speed v. When the back of the train passes 

a tree, a photon is fired from the back toward the front. It arrives at the front when the front passes a house. What 

is the distance between the tree and the house (in the ground frame)?

Now look at things in the train frame. Using the tree-house proper distance you just found, write down the relation 

that expresses the fact that the hosue meets the front of the train at the same time the photon does. This will allow 

you to solve for a).

Solution

In the ground frame, the given rule tells us that the length of the train is av L. So the front of the train has a head 

start of av L over the photon. The photon closes this gap at a relative speed of c - v, as measured in the ground 

frame. The time of the process is therefore t = av L

c-v
. During this time, the photon

travels a distance c t =
c av L

c-v
. This then is the tree-house distance in the ground frame.

Out[ ]=

Now consider the setup in the train frame as shown above. The photon is emitted when the tree coincides with the 

back of the train (a frame independent statement). The train has length L (its proper length), and the tree-house 

distance is av
c av L

c-v
. This is true because our rule states that if an object is moving, the observed length equals a 

times the proper length, which we found above to be c av L

c-v
 for the tree-house separation. The initial distance 

between the house and the front of the train is therefore a c av
2 L

c-v
- L (subtracting off the train’s length). The house 

covers this distance at speed v. The photon covers the length L of the train at speed c. Since the house and the 

photon arrive at the front of the train at the same time, we must therefore have
c av

2 L

c-v
-L

v
=

L

c
(13)

av
2

1- v

c

- 1 =
v

c (14)

av
2 = 1- v2

c2 (15)

av = 1- v2

c2 =
1
γ

(16)

as desired. □ 

The Head Start Effect within the Lorentz Transformation
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Example

Recall two facts about special relativity:

◼ Head Start Effect: If two synchronized clocks are at rest on a moving train (proper length L moving at speed v), 
an observer on the ground will see the rear clock ahead by L v

c2

Out[ ]=

◼ Lorentz Equations: Two events occurring a distance Δx and time Δt apart in frame S will occur a distance Δx ' 
apart and time Δt ' in a frame S ' moving with speed v relative to S in the +x

 direction (as shown below)

Out[ ]=

Δx = γ (Δx '+ v Δ t ') Δx ' = γ (Δx- v Δ t)

Δ t = γ Δ t '+ v

c2 Δx ' Δ t ' = γ Δ t-
v

c2 Δx (17)

Show that the Lorentz equations contain the Head Start Effect. In other words, under the conditions implied by the 

Head Start Effect, pull out the time difference L v

c2  between the clock readings in the reference frame of the ground. 

Be careful about both the magnitude and sign of the effect (with the rear clock showing a higher time).

Solution

Denote the ground frame by S and the train frame by S '. We will define Event 1 as the person on the ground 

reading the front clock and Event 2 as the person on ground reading the rear clock. In the Head Start Effect, both 

Events happen simultaneously (Δt = 0), and the person reads the rear clock as showing a time L v

c2  larger than the 

front clock. How can we incorporate this information?

First, note that everyone must agree on the times that the front clock shows during Event 1 and the time the rear 

clock shows during Event 2 (for example, we could have set up the experiment so that two photons hits the two 

clocks when the person in the ground frame reads them, and the time on a clock when a photon hits it is frame 

independent). We know that the two clocks are synchronized on the train frame, which means that in that frame 

Event 2 must happen a time L v

c2  later than event 1, so we must have Δt ' = L v

c2 = -
Δx' v

c2  where we have used the fact 

that in the train’s frame, the two events happen a distance Δx ' = -L apart (if you are confused by the negative sign, 

note that Event 2 happens at the back of the train (at a more negative x value) at a later time). 

The Lorentz equations do indeed give this result, since substituting Δx = γ (Δx ' + v Δt ') and Δt = 0 into 

Δt ' = γ Δt -
v

c2 Δx yields

Δ t ' = γ Δ t-
v

c2 Δx

= -γ2 v

c2 (Δx '+ v Δ t ')
(18)
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Solving for Δt ' yields

Δ t ' 1+
v2

c2

1- v2

c2

= -γ2 v

c2 Δx ' (19)

Δ t ' 1

1- v2

c2

= -γ2 v

c2 Δx ' (20)

Δ t ' = -
v

c2 Δx ' (21)

as desired. □ 

Insane Track

Velocity Addition from Scratch

Example

A ball moves at speed v1 with respect to a train. The train moves at speed v2 with respect to the ground. What is 

the speed of the ball with respect to the ground? Solve this problem (that is, derive the velocity-addition formula, 

V =
v1+v2

1+
v1 v2

c2

) in the following way. (Don’t use time dilation, length contraction, etc. Use only the two postulates of 

relativity.)

Out[ ]=

Let the ball be thrown from the back of the train. At the same instant, a photon is released next to it. The photon 

heads to the front of the train, bounces off a mirror, heads back, and eventually runs into the ball. In both the train 

frame and the ground frame, calculate the fraction of the way along the train where the meeting occurs, and then 

equate these fractions.

Solution

We will use the fact that the meeting of the photon and the ball occurs at the same fraction of the way along the 

train, independent of the frame. This

is true because, although distances may change depending on the frame, fractions remain the same, since length 

contraction doesn’t depend on position. We’ll compute the desired fraction in the train frame S ' and then in the 

ground frame S.

Out[ ]=

Train frame: Let the train have length L ' in the train frame S ' shown above. Let's first find the time at which the 

photon meets the ball. The sum of the distances traveled by the ball and the photon, which is v1 t ' + c t ', must equal 

twice the length of the train, which is 2 L '. The time of the meeting is therefore

t ' = 2 L'
c+v1

(22)
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The distance the ball has traveled is then d ' = v1 t ' = 2 v1 L'
c+v1

, so the desired fraction F ' is 

F ' = d'
L'
=

2 v1

c+v1
(23)

Ground frame: Let the speed of the ball with respect to the ground be v, and let the train have length L in the 

ground frame. (L equals L'
γ

, but we’re not going to use this.)

Out[ ]=

Again, let’s first find the time at which the photon meets the ball. The photon takes a time L

c - v2
 to reach the 

mirror, because the initial gap of L is

closed at a rate c - v2 in the ground frame. At this time, the photon has traveled a distance c L

c-v2
. From the figure, 

we see that we can use the same reasoning we used in the train frame, but with the sum of the distances traveled 

by the ball and the photon, which is v t + c t, now equal to 2 c L

c-v2
. The time of the meeting in the ground frame is 

therefore

t =


2 c L

c-v2


c+v
(24)

The relative speed of the ball and the back of the train (as viewed in the ground frame) is v - v2. This is the rate at 

which the gap between them is increasing. So the distance between the ball and the back of the train at the time of 

the meeting is d = (v - v2) t = (v - v2)
2 c L

(c-v2) (c+v)
. The desired fraction F is therefore

F =
d

L
=

2 (v-v2) c

(c-v2) (c+v) (25)

We can now equate the above expressions for F ' and F, which yields
v1

c

1+ v1

c

=
v

c
-

v2

c

1- v2

c
 1+ v

c


(26)

Solving for v in terms of v1 and v2 gives, after some algebra,

v =
v1+v2

1+ v1 v2

c2
(27)

as desired. □ 

Synchronizing Clocks

This problem demonstrates that if we take two synchronized clocks and move them arbitrarily slowly, they will 

stay synchronized.

Example

Two synchronized clocks, A and B, are at rest in a given frame, a distance L apart. A third clock, C, is initially 
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 synchronized  given  apart.  initially

located right next to A. All three clocks have initial readings at zero, and then C is moved very slowly (with speed 

v ≪ c) from A to B. Show that its final reading can be made arbitrarily close to B’s by making v sufficiently small. 

(The Taylor series (1 - ϵ)1/2 ≈ 1 -
ϵ

2
 will come in handy.)

Solution

In the frame of A and B, it takes a time of L

v
 for C to travel from A to B. During this time, C runs slow by a factor 

γ, so only L

γ v
 elapses on C during the journey. Therefore, when C reaches B, the reading on C is L

γ v
, and the 

reading on B is L

v
. If v is small (more precisely, if v ≪ c), we can use (1 - ϵ)1/2 ≈ 1 -

ϵ

2
 to approximate C’s reading 

as
L

γ v
=

L

v
1- v2

c2 
1/2

≈
L

v
1- v2

2 c2  =
L

v
-

L v

2 c2 (28)

The difference between C's and B's readings is therefore L v

2 c2 . This goes to zero as v → 0, as desired. We see that 

even though the total time L

v
 in A's and B's frame goes to infinity as v → 0, the L v

2 c2  difference between C's and B's 

readings goes to zero. This is due to the fact that L

v
 has only one power of v in the denominator, whereas the γ 

factor depends quadratically on v. If the γ factor were instead equal to 1

1-
v

c

1/2 , then the difference in the readings 

would take on the fixed value of L

2 c
 in the v → 0 limit. □ 

Time Dilation and L v
c

2

Example

A person walks very slowly at speed u from the back of a train of proper length L to the front. As shown in the 

previous problem, the time-dilation effect in the train frame can be made arbitrarily small by picking u to be 

sufficiently small, because the effect is second order in u, while the travel time is only first order in 1
u

. Therefore, 

if the person’s watch agrees with a clock at the back of the train when he starts, then it also (essentially) agrees 

with a clock at the front when he finishes.

Now consider this setup in the ground frame, where the train moves at speed v. The rear clock reads L v

c2  more than 

the front, so in view of the preceding

paragraph, the time gained by the person's watch during the process must be L v

c2  less than the time gained by the 

front clock (because they agree in the end). Since we are assuming u is small, you may assume u ≪ c. By working 

in the ground frame, explain why this is the case.

Finally, consider the implications for the following scenario: If you line up a collection of these train systems 

around the circumference of a circular rotating platform. Let person A be at rest on the platform at a point on the 

circumference, and let person B start at A and walk arbitrarily slowly around the circumference. When B returns to 

A, how will B’s clock compare to A’s?

Solution

The velocity-addition formula gives the person’s speed in the ground frame as u+v

1+
u v

c2

, so in the ground frame the 

person must close the

initial gap of L

γ v
 that the front of the train had at a relative speed of u+v

1+
u v

c2

- v. The time in the ground frame is 

therefore

tg =
L/γv

u+v

1+
u v

c2

-v
=

L1+ u v

c2 

u 1- v2

c2 
1/2 (29)
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Compared with this ground-frame time, the front clock on the train runs slow by the factor γv, and the person's 

watch runs slow by the γ factor associated with the speed u+v

1+
u v

c2

, which you can show equals γu γv1 +
u v

c2 . The 

difference in the elapsed times on the front clock and the person's watch is therefore

ΔTfront -ΔTperson =
L1+ u v

c2 

u 1- v2

c2 
1/2 

1
γv
-

1
γu γv1+

u v

c2 


=
L

u
1+ u v

c2 -
1
γu


=
L v

c2 +
L

u
1- 1

γu


(30)

The second term here is negligible for the following reason. For small u, we can use the Taylor series 

(1 - ϵ)1/2 ≈ 1 -
ϵ

2
 to write 1

γu

= 1 -
u2

c2 
1/2

≈ 1 -
u2

2 c2 . The L

u
1 -

1
γu

 term then becomes L

u

u2

2 c2 . Since u is assumed 

to be small (more precisely, u ≪ c), this term is negligible. So Equation (30) becomes ΔTfront - ΔTperson ≈
L v

c2 . The 

front clock therefore gains essentially L v

c2  more time than the person's watch, as we wanted to show. 

Since the front clock started L v

c2  behind the person's watch, we conclude that they end up showing the same time 

when the watch reaches the front, as we already knew from working in the train frame. The point here is that no 

matter how small u is, the result for ΔTfront - ΔTperson is nonzero (namely L v

c2 ) because u appears at first order in 

the γ factor, γu γv1 +
u v

c2 , associated with u+v

1+
u v

c2

, while it appears only at second order in γu. The difference 

between the γ factors is therefore first order in u, and this difference combines with the 1
u

 factor in the time to 

yield a nonzero result.

The result in Equation (30) holds perfectly well for non-small u too, so it implies that the final readings on the 

front clock and the person's watch differ by L

u
1 -

1
γu

, for any u. In retrospect, this is clear from the train-frame 

calculation which gives the difference as L

u
1 -

1
γu
, due to the time dilation of the watch.

Regarding the final question, B’s clock will read less than A’s, because the above reasoning shows that an inertial 

observer sees B’s clock running slower than A’s. This result, that you can walk arbitrarily slowly in a particular 

reference frame and have your clock lose synchronization with other clocks, is a consequence of the fact that in 

some accelerating reference frames it is impossible to produce a consistent method (that is, one without a disconti-

nuity) of clock synchronization. See this amusing article by Cranor et al. (2000) for more details. □ 
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